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The possibility of representing molecular orbitals in terms of a many centre expansion of modu- 
lated plane waves is discussed. All integrals appearing in the usual SCF procedure for the calculation 
of the energy are obtained in an analytical form. The resulting formulae are rather simple to be evaluated. 

Es wird die M6glichkeit, Molektilorbitale mittels einer Mehrzentrenentwicklung von modulierten 
ebenen Wellen darzustellen, diskutiert. Alle Integrale, die in einer SCF-Rechnung iiblichen Typs 
(z. B. CNDO) erscheinen, werden in einer einfach auszuwertenden analytischen Form angegeben. 

1. Introduction 

The ab initio evaluation of accurate molecular wave functions by the Hartree- 
Fock method is usually approached by expanding the molecular orbitals in terms 
of a many-center basis set of functions referred to various atomic nuclei. 

If the basis functions centered at any a tom form by themselves a complete set, 
one may evidently get an expansion over a redundant set. When the employed 
number of terms at each expansion centre is small, as for example in the case of a 
minimal set of Slater orbitals, there is no difficulty in connection with the re- 
dundancy; as the number of terms increases, however, the overlap matrix tends to 
become singular the self-consistency procedure becomes more and more difficult 
and the loss of significant digits is such as to invalidate the results obtained. In 
order to obviate such difficulties, several authors, besides resorting to double or 
triple precision in using the computer, group the basis functions in order to get a 
smaller number  of terms. 

It is difficult, however, to formulate precise criteria to guide such procedures [1]. 
An expansion utilizing only a one-center complete set of basis functions does not 
present such difficulties, but it does not appear convenient because of the very 
high number  of terms required. It does not have, moreover, the capability of 
representing discontinuities of the first derivative outside of the centre of expansion, 
that are required for some orbitals at certain points. A resonable way out of such 
difficulties appears to be the following: one should employ a small number of 
functions centered at the various nuclei to represent the peculiarities of the wave 
function in the neighbourhoods of the nuclei, and an extended set of spread-out 
functions to give a description of the remaining part of the wave function. 
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In the present research we propose to specify this idea and to obtain the set of 
analytical formulae useful for the SCF procedure in terms of a special type of basis 
functions which we will call modulated plane waves. 

2. Modulated Plane Waves 

The methods of evaluation previously outlined divides the molecular space 
into many parts. The simplest procedure would be to consider a sphere centered 
at the molecule center of mass with a radius such as to contain the whole molecule 
after assigning to each atom a volume at least equal to the Van der Waals one. In 
the neighbourhood of every atom, moreover, a sphere is to be of sufficiently small 
radius to avoid having the atoms overlap each other. The whole space is therefore 
divided into three regions: 

The space inside the small spheres (region I), the space external to the pre- 
ceeding ones but internal to the main sphere (region II), the space external to the 
main sphere, where the wave function essentially vanishes (region III). 

However, such a subdivision would introduce considerable difficulties in the 
subsequent calculations, because of the continuity requirement for all molecular 
orbitals in every point in space. This difficulty is overcome if, instead of this parti- 
tion into spheres, one replaces the above rigid spheres by proper weight functions, 
which we simply choose of the form e -rz/12. The basis functions are therefore 
modulated in such a way as to be unchanged in the neighbourhood of the origin, 
while they quickly become zero as soon as r exceeds 1. The group of functions that 
describes the local situation in the neighbourhood of the k ~ nucleus will be multi- 
plied by e -(rk/~)2, rk being the distance from the k th nucleus and lk a parameter 
depending on the "dimension" of the atom considered while the spread-out 
functions will be multiplied by e -('/t)2, with obvious meanings of the symbols. If R 

is the distance between two nuclei A and B and we put l A - - l  B = R ,  the two 
n 

normalized weight functions overlap by e -"2/2, so that it is manifest that for 
n = 6 the two spaces are already practically disjoint. 

We pass now to a discussion of the properties required of the basis functions. 
In region II, orbitals have to be represented which display neither cusp points nor 
very pronounced maxima that can be located a priori.  With this object in view, it 
would appear convenient either to use an expansion in terms of Tchebycheff poly- 
nomials or a Fourier 3-dimensional expansion. Since the first alternative can be 
reduced to a linear combination of gaussian functions, in the following only the 
formulae are given that refer to the second kind of expansion. 

As far as region I is concerned, there is no doubt that atomic orbitals of the 
Slater type are well suited functions, mostly owing to their capability for repro- 
ducing cusps at the nuclei. In principle such a behaviour may be obtained by 
means of any expansion where the r variable explicitly appears, but not by a poly- 

�9 nomial expansion in x, y, z. On the other hand a careful description of the function 
at the nucleus is probably very important only in the evaluations of some particular 
observables (related, for instance, to the so-called Fermi contact term); but much 
less so for other observables, as is shown by the very good results obtained for the 
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energy by gaussian function expansions. For all these reasons, we have restricted 
our research to a Fourier 3-dimensional expansion also in the neighbourhoods 
of the nuclei so that in each region an expansion in terms of plane waves modulated 
by weight functions has been considered. 

If k indicates any expansion centre, the above functions, take the form 

[(~llk) ~ ~-i ~ (,,k" "~) I 
Z(lk; rk) = Jr ~ z~ j; (1) 

X being a normalization coefficient and n a vector with integral components�9 Let 
r be the distance of any point P from the origin 0, and rk be the distance from a new 

�9 
origin 0', and then if R is the distance between 0 and 0', we write N = R + z -~- n, 

c~ = 1/l~. Then (1) becomes: 

z(R, N, ct; r) = .Are -='2+N'" (2) 

3. Evaluation of  Integrals 

The overlap and kinetic energy integrals can easily be obtained by using the 
following standard integrals [2]: 

-~+~ e-'X2+qXdX = ~ P  eq'/4~ 

+oo 

e-'~2+qXxdx= q---I/~-e q'/4" (3) 
-oo 2P V P 

+ oo q2 
[. e-eX2+qXx2dx = l / T e , ' / 4 , ( !  + 

-~ V p \2p ~ ) "  

In these formulae p is real and positive, while q may be complex. Thus, 

S=~z*(R,N,~;  1)%(R', N', c~'; 1)d'q 

= .A/'jff' ~ e-(~+~')r:+0v*+N')' ~d~ 

= Jg'.A/" ~ e-(~+~')x2+(N~+N;~)~dx~ ... dy~ ... dz 
= ~ / ~ / . , [  7~ \3 /2  (N*+N') 2 

~ - , )  e 4-(,+~') 

(N, +N,)2 
_ [ 4c~o~l 3/4 _o~R2_at,R,2_l. 4(Ct+O~') 

\ ~  e 

T = 5 Z*( R, N, cx; 1 ) ( -  1F2) z(R', N', e'; 1) d'c 

= sg'~A/" ~ e -(~+~')'=+(N*+N)" '(3e' - �89 - 2~'r)E)dz 

. .  ( 3  . .  a+c~' 2(~+~')  - ~ , / / s ,  

where sff = e -~R2.  

24 Theoret. chim. Acta (Bed.) Vol. 26 
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For the nuclear attraction integrals and for the two-electron integrals, we shall 
use the formulae (3) and the 3-dimensional Fourier development [3] of 

1 1 e-ik(~2-'t)dk 
ir 2 _ r l  I - 27r2 S k 2 

that combined with the Laplace transform of ~ 2  [4] 

becomes 

1 
~ -  = S e-*k2dt 

0 

1 _ 1 ~ dt ~ r - tk2- ik (r2- ,Odk 
It'2 -- rll 2 z f  o 

I fZ  denotes the nuclear charge of any nucleus designated by its position vector 
Q from the origin, we have: 

V = - Z ~  Z*(R, N, ~; 1 ) r _ l  e[ (R ', N', c~'; 1)dz 

= -Z,Af,/V" S e-(~+~')'~+(N*+N')~ 1 
Ir - el dr  

-ZJV 'dV '  
_ S e-tk~ -(a +~')r2+(N* +X'-/k)r +~k dt dk dr  

2~r 2 

where 

_Z~p~/',]//~e(N*+N)2/4(a+a ') ~ e-(a+ib)/(~+l) 
= r + r  0 (~; + 1) 3/2 

= -Z(o~ + ~,)1/2 S - 1  eft(c), 
c 

d? 

(N*+N' 
a + ib = 2( q and c = + ib). 

The two-electron integrals are calculated by the following relation: 

1 

�9 ~*(R3, N3, ~3; 2) X(R4, N4, ~4; 2) d ~  d% 

= j f ~ y ,  ~ e - (~  +~2)r~-(~3+~4)~§ T § +N~-ik). ~2e-tk~ dt  d k  dr 1 dr  2 

Tce(NI+N2)2/4(at+ct2)+(N~+N4)2/4(r ~ e-(a+ib)/(t+l) 

-- (Oq + 0r (~3 +'0r V(oq + ~2 + 0r + 0r 0 (t + 1) 3/2 d t  

\ 0 { 1 + 0 ~ 2 + 0 ~ 3 + ~ 4 /  C ' 
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where 

(a + ib) = 
(0el "~ 0~2) (0~3 "at- (X4) , [. NI* --[- ]~/2 N~ "~ ]~412 

c =  V a + i b  

and S and S' are the overlap integrals between the first and the second pair of 
functions. 

The actual utilization of the preceding expressions offers some difficulties only 
in as far as the calculation of the function eft(z) when z is complex [5a] is con- 
cerned. That is, numerical problems arise when Izl is not a small quantity, because 
in such a case the Maclaurin series development is not convenient any more I-6]. 
In order to overcome this trouble, it was found convenient to put z = x + iy and 
to use the following expressions: 

e r f ( z ) = l + e  for x 2 - y 2 > 1 7 ,  where 151<4-10 -8 

�9 y2 
12e ~, , 

eft(z) = ~ -  r ty)  for x = 0 

2 e_2ixr ~ e_X2t2+r2#~(x_iy/t2)dt erf(z) = 1 - ~ -  1 

i2e-~  ~ r 
I e~+2itXdt, eft( ) = e f t (x )  + o 

erf(z) = ~ F(y) + 2er~ o e - ( t 2 + 2 i t y ) d t '  

(4) 

(5) 

(6) 

y 

where F ( y ) = e - r 2 ~  d2dt  is the Dawson's function [5a] for which O < F ( y )  
o 

< 0.54104422. 
The use of the expression (5) is the more convenient when y is small with respect 

to x, while the expression (6) is instead more convenient when x is small with respect 
to y. 

In order to evaluate the integral appearing in (4), we pose: 

where 

e-~'~+Y~/'~(x - iy/t z) dt ~- S e-~t~+r~#~(x - iy / t2)dt ,  
1 I 

U =  
~ / x 2 _ y 2 + 1 7  V [ y 2 _ x 2  1712 y2 

2x z + ~x ~ + x~ .  

(7) 

The integrals which appear in the expressions (5), (6) and (7) may be easily evaluated 
numerically with a relatively few Gauss points. 
24* 
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